Things you will need to know for the Real Analysis in MATH20101

Summations

Questions 13-17 concern Arithmetic Sums
13) Write the numbers $1,2,3, \ldots, n$, in a row. Write the numbers again, in a row below the first row, but in the reverse order. Add each of the columns. Add the resulting totals. In this way give a formula for

$$
\sum_{i=1}^{n} i .
$$

14) Assume that there exists a formula of the type

$$
\begin{equation*}
\sum_{i=0}^{n} i^{3}=a n^{4}+b n^{3}+c n^{2}+d n+e \tag{1}
\end{equation*}
$$

for some real numbers a, b, c, d and e, that will be valid for all $n \geq 0$. Substitute $n=0,1,2,3$ and 4 to find five different equations satisfied by a, b, c, d and e. Solve and thus give a formula for

$$
\sum_{i=0}^{n} i^{3}
$$

valid for all $n \geq 0$.
This could take you some time! In fact, you should end up with only four equations in four unknowns. You can write this system as a matrix equation, the question then becomes one of inverting a 4×4 matrix. This is an excellent problem on which to apply Gaussian elimination as learnt in First year Linear Algebra.
15) Prove by induction that

$$
\sum_{i=1}^{n} i^{4}=\frac{n(n+1)(2 n+1)\left(3 n^{2}+3 n-1\right)}{30}
$$

for all $n \geq 1$.
Note, though you will never have need of them there are results for $\sum_{i=1}^{n} i^{\ell}$ for every $\ell \in \mathbb{N}$, and the next two such results for $\ell=5$ and 6 are

$$
\begin{aligned}
\sum_{i=1}^{n} i^{5} & =\frac{n^{2}(n+1)^{2}\left(2 n^{2}+2 n-1\right)}{12} \\
& =\frac{1}{6} n^{6}+\frac{1}{2} n^{5}+\frac{5}{12} n^{4}-\frac{1}{12} n^{2}
\end{aligned}
$$

and

$$
\begin{aligned}
\sum_{i=1}^{n} i^{6} & =\frac{n(n+1)(2 n+1)\left(3 n^{4}+6 n^{3}-3 n+1\right)}{42} \\
& =\frac{1}{7} n^{7}+\frac{1}{2} n^{6}+\frac{1}{2} n^{5}-\frac{1}{6} n^{3}+\frac{1}{42} n .
\end{aligned}
$$

Aside What is interesting here is that, for all $\ell \in \mathbb{N}$ the sums of ℓ-th powers of integers, $\sum_{i=1}^{n} i^{\ell}$, are integers. Therefore the fractions

$$
\begin{aligned}
& \frac{n(n+1)(2 n+1)\left(3 n^{2}+3 n-1\right)}{30}, \frac{n^{2}\left(2 n^{2}+2 n-1\right)(n+1)^{2}}{12} \\
& \text { and } \frac{n(n+1)(2 n+1)\left(3 n^{4}+6 n^{3}-3 n+1\right)}{42}
\end{aligned}
$$

are integers for all $n \geq 1$. Alternatively, the polynomials

$$
\frac{n^{5}}{5}+\frac{n^{4}}{2}+\frac{n^{3}}{3}-\frac{n}{30}, \frac{1}{6} n^{6}+\frac{1}{2} n^{5}+\frac{5}{12} n^{4}-\frac{1}{12} n^{2}
$$

and

$$
\frac{1}{7} n^{7}+\frac{1}{2} n^{6}+\frac{1}{2} n^{5}-\frac{1}{6} n^{3}+\frac{1}{42} n
$$

do not have integer coefficients but are, nonetheless, integers for every $n \geq 1$. I would claim this is not obvious at first sight.

Question Use the Theory of Congruences to show that

$$
\begin{aligned}
n(n+1)(2 n+1)\left(3 n^{2}+3 n-1\right) & \equiv 0 \bmod 30, \\
n^{2}\left(2 n^{2}+2 n-1\right)(n+1)^{2} & \equiv 0 \bmod 12, \\
n(n+1)(2 n+1)\left(3 n^{4}+6 n^{3}-3 n+1\right) & \equiv 0 \bmod 42,
\end{aligned}
$$

for all $n \geq 1$
16) (2003) Evaluate

$$
\sum_{i=1}^{n}\left(1+2 \frac{i}{n}\right)^{2} \text { and } \sum_{i=1}^{n}\left(1+2 \frac{i-1}{n}\right)^{2} .
$$

13) (2004) Evaluate

$$
\sum_{i=1}^{n}\left(\frac{i-1}{n}\right)^{3} \quad \text { and } \quad \sum_{i=1}^{n}\left(\frac{i}{n}\right)^{3} .
$$

Questions 18-21 concern Geometric Sums.
18) Let $x \in \mathbb{R}$ and set

$$
S=x+x^{2}+x^{3}+\ldots+x^{n} .
$$

Look at $x S$, rewrite in terms of S, rearrange and thus give a formula for

$$
\sum_{i=1}^{n} x^{i}
$$

valid for $x \neq 1$.
Check your answer using Question 1 iii) above.
19) Give a formula for

$$
\sum_{i=1}^{n} \frac{1}{x^{i}},
$$

valid for $x \neq 0,1$.
20) (2006) Evaluate

$$
\sum_{i=1}^{n} 2\left(2 \eta^{i}\right)^{2}\left(2 \eta^{i}-2 \eta^{i-1}\right) \quad \text { and } \quad \sum_{i=1}^{n} 2\left(2 \eta^{i-1}\right)^{2}\left(2 \eta^{i}-2 \eta^{i-1}\right) .
$$

where η is the n-th root of a positive X, i.e. $\eta^{n}=X$.
21) (2009) Evaluate

$$
\sum_{i=1}^{n}\left(\frac{1}{\eta^{i-1}}\right)^{2}\left(\eta^{i}-\eta^{i-1}\right) \quad \text { and } \quad \sum_{i=1}^{n}\left(\frac{1}{\eta^{i}}\right)^{2}\left(\eta^{i}-\eta^{i-1}\right)
$$

where η is the n-th root of a positive X, i.e. $\eta^{n}=X$.

